

"EVALUACIÓN DE MODELOS EMPÍRICOS EN LA ESTIMACIÓN DE LA GEOMETRÍA DEL BULBO **HÚMEDO EN RIEGO POR GOTEO**"

Autores:

Prado Hernández Jorge Víctor. Muñoz Cristóbal Irouri. Quintero Cabriales Alejandro.

INTRODUCCIÓN

Conocer el movimiento del agua en el suelo, en riego por goteo, puede ofrecer mejores bases para proyectar y planear las prácticas de riego a nivel parcelario. El conocimiento del frente húmedo es muy útil en el diseño y operación del riego, para que la aplicación sea eficiente, evitando patrones irregulares de distribución de la humedad.

Figura 1. Perfil de suelo en maíz. Fuente: InfoAgrícola.com

INTRODUCCIÓN

Para la estimación de la evolución temporal del diámetro y profundidad del frente de avance del bulbo húmedo en riego por goteo, existen modelos matemáticos empíricos que contemplan las características del suelo y la operación del sistema de riego.

Dichos modelos fueron obtenidos con variedad de estrategias metodológicas por lo que resulta necesario evaluar sus capacidades predictivas.

OBJETIVO PRINCIPAL

Evaluar cinco modelos matemáticos empíricos del comportamiento temporal del diámetro y profundidad del frente de humedecimiento, a partir de las características físicas del suelo y de las condiciones de riego, para identificar el adecuado para el diseño y operación de sistemas de riego por goteo superficial.

OBJETIVOS SECUNDARIOS

✓ Obtener la evolución temporal y espacial del frente de avance del bulbo de humedecimiento en un suelo franco arenoso en riego por goteo superficial, a partir de mediciones experimentales y representaciones gráficas.

✓ Delimitar el efecto del caudal del emisor, el tiempo de riego y el contenido de humedad inicial del suelo sobre la evolución de la geometría del frente de humedecimiento.

REVISIÓN DE LITERATURA: MODELO EMPÍRICOS

Modelo de Amin & Ekhmaj (2006):

$$d = 12.544\Delta\theta^{-0.5626}V^{0.2686}q^{-0.0028}K_s^{-0.0344}$$

$$z = 6.194\Delta\theta^{-0.383}V^{0.365}q^{-0.101}K_s^{0.195}$$

Modelo de Malek & Peters (2011):

$$d = q^{0.543} K_s^{0.772} t^{0.419} \Delta \theta^{-0.687} P_b^{0.305}$$

$$z = q^{0.398} K_s^{0.208} t^{0.476} \Delta \theta^{-1.253} P_b^{0.445}$$

Modelo de Al-Ogaidi et al. (2015):

$$d = 40.489 q^{0.2717} t^{0.2562} K_s^{-0.2435} \theta_i^{\ 0.1122} P_b^{\ 2.0770} S^{-0.1082} S i^{0.0852} \mathcal{C}^{-0.1540}$$

$$z = 2.266q^{0.3249}t^{0.3902}K_s^{0.0010}\theta_i^{0.0520}P_b^{6.1919}S^{-0.0928}Si^{0.2574}C^{-0.2162}$$

Modelo de Cruz-Bautista et al. (2016):

$$d = 9.985 V^{0.353} K_s^{-0.110} \theta_i^{-0.387}$$

$$z = 331.524 V^{0.458} q^{-0.152} \theta_i^{\ 0.386} \theta_r^{\ 0.349} Si^{-0.421}$$

Modelo de Prado-Hernández et al. (2017):

$$d = 35.426q^{0.0418}Ks^{-0.0179}t^{0.3216}\Delta\theta^{-0.0232}P_b^{-0.1535}MO^0$$

$$z = 10.7989 q^{0.6030} K s^{-0.0277} t^{0.3378} \Delta \theta^{-0.0109} P_b^{-0.0770} MO^0$$

REVISIÓN LITERATURA

Cuadro 1. Fronteras de validez de los modelos. Fuente: Cristóbal et al, 2022. NE: Valores no especificados.

Modelo		(l h ⁻¹)	h-1)	θ _s (cm ³	P _b (g cm ⁻ ³)	θ _i (cm³ cm-³)	θ _r (cm³ cm⁻³)	MO (%)
	Limoso y Franco arenoso.		0.84 - 8.4	¹N.E.	N.E.	N.E.	N.E.	N.E.
Amin & Ekhmaj (2006)	Limoso, Franco, Arenoso y Franco arcilloso.		0.85 - 5.80		1.28 - 1.46	0.03 - 0.27	N.E.	N.E.
Malek & Peters (2011)	Franco arcilloso.	2.00 - 6.00	3.66	N.E.	1.48	0.22	N.E.	N.E.
	Arenoso, Limoso, Franco y Franco arcilloso.		0.85 - 5.80		1.28 - 1.46	0.03 - 0.27	N.E.	N.E.
			2.05 - 3.28		1.18 - 1.51	0.05 - 0.11	0.04 - 0.08	N.E.
Prado- Hemández et al. (2017)	Franco arcillo arenoso	3.00 - 4.00	11.40 - 44.40	N.E.	1.12 - 1.52	N.E.	N.E.	1.75 - 2.82

- 1. Estructura del cubo de acrílico
- Placas de acrílico
- Soportes aluminio
- Polines de soporte
- Sistema de drenaje

Figura 2. Cubo de acrílico en laboratorio

2. Sistema de riego. Verificación a 0.56 BAR y aforo de goteros.

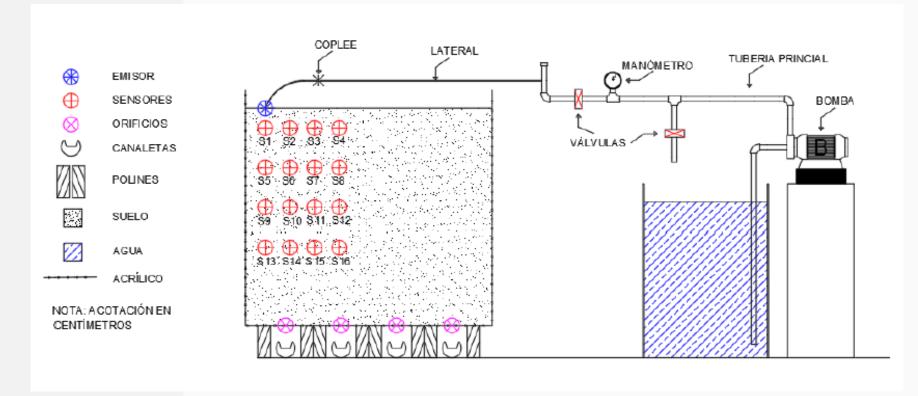


Figura 3. Vista lateral sistema de riego y cubo de prueba.

3. Calibración de sensores inteligentes de humedad modelo S-SMC-M005

Figura 4. Sensor de humedad HOBO.

Cuadro 2. Valores permisibles en la verificación de los sensores de humedad del suelo.

Sensor	Aire	Agua
S-SMC-M005	-0.26 a -0.13	0.47 a 0.57

- 4. Muestreo y preparación del suelo
- Obtener suelo de campo (quitando materia orgánica).
- Secado en invernadero.
- Triturado con apisonador de madera.
- Tamizado por criba de 6mm.
- Se agregó arena (2cubetas de suelo, por 1 de arena).
- Llenado del cubo a densidad 1.4 g cm-3.

Figura 5. Vista de perfil cubo de acrílico

- 5. Caracterización del suelo
- Hidrómetro de bouyucos para textura
- Terrón y parafina para densidad aparente
- Walkley y black para MO
- Olla de presión para contenido de humedad gravimétrico a capacidad de campo
- Membrana de presión para contenido de humedad gravimétrico a PMP.
- Permeámetro para la conductividad hidráulica a saturación.

6. Llenado e instalación de sensores.

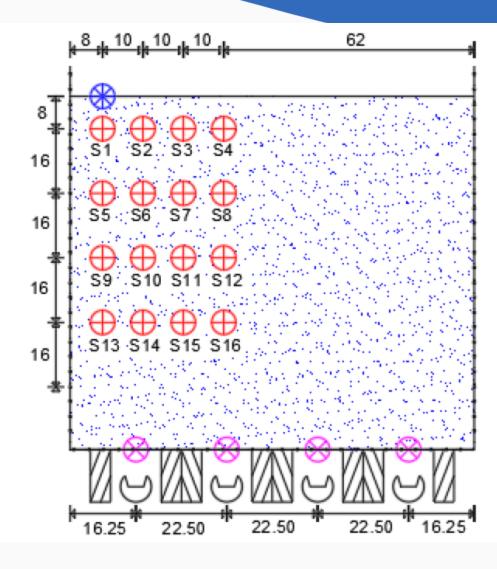


Figura 6. Vista lateral de cubo y acomodo de sensores

7. Pruebas de riego

Figura 7. Nivelación de suelo

Figura 8. Inicio de riego

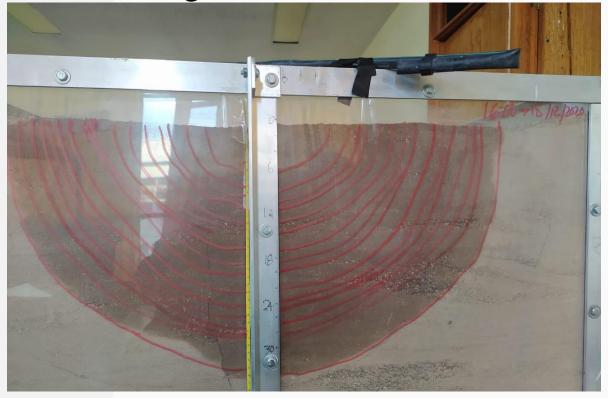
Figura 9. Proceso del riego

7. Pruebas de riego

Figura 10. Vista frontal de la evolución del bulbo húmedo

Figura 11. Formación del bulbo húmedo

7. Pruebas de riego


Cuadro 3. Información general de los seis riegos

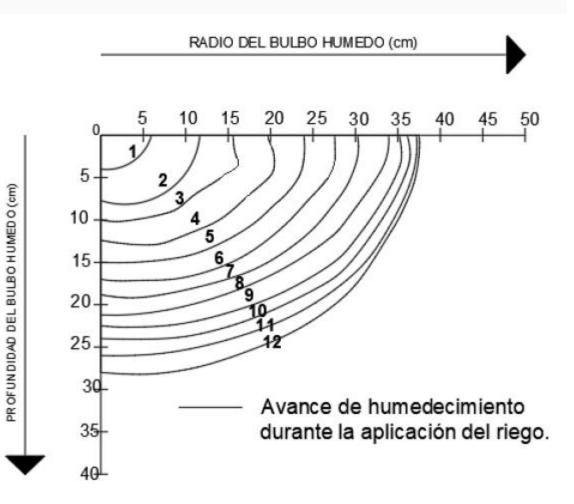
Número de Riego	Caudal (L h ⁻¹)	Tiempo de Riego (h)	θ _i promedio (cm ³ cm ⁻³)	Número de lecturas en d y z
1	2.92	6.50	0.082	12
2	2.92	5.00	0.215	13
3	1.58	6.00	0.118	11
4	1.58	5.00	0.240	13
5	7.48	3.00	0.217	13
6	7.48	1.00	0.244	10

8. Registro y generación de la geometría del frente húmedo

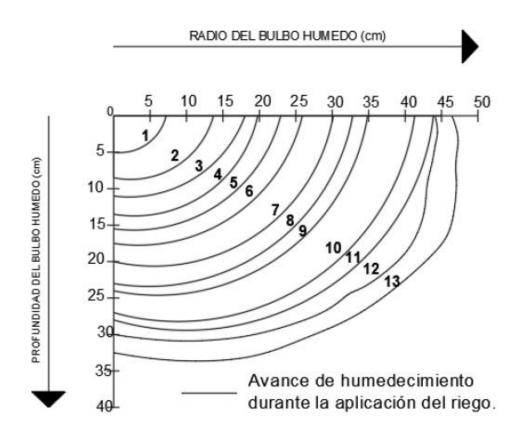
Figura 12. Registro de la evolución del bulbo húmedo a través del tiempo (cada línea roja es una medición).

RESULTADOS

1. Análisis de cada riego, presentando cuadros y gráficas de los diámetros y profundidades medidas directamente en el bulbo húmedo en distintos intervalos de tiempo.


2. La evaluación del desempeño de los modelos se presenta en dos partes, la primera analiza el diámetro y la segunda la profundidad del bulbo húmedo en los seis riegos.

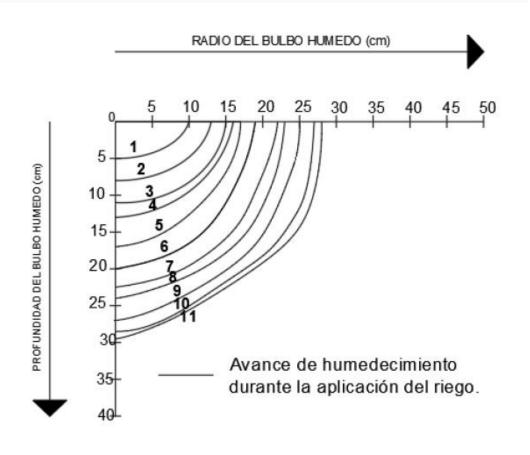
	Número de	Tiempo	d (cm)	z (cm)
	medición	(H:M:S)		
	0	0:00:00	0.00	0.00
	1	0:20:00	11.94	4.00
	2	0:45:00	23.32	7.70
	3	1:00:00	31.12	10.00
RIEGO 1.	4	1:20:00	39.36	12.40
	5	2:00:00	47.86	15.00
Q=2.92lh-1	6	2:20:00	55.10	17.00
$\Theta i=0.082$	7	2:50:00	60.48	18.80
cm3cm-3	8	3:20:00	67.82	21.20
	9	3:50:00	70.32	22.50
	10	4:20:00	72.20	24.00
	11	5:00:00	74.36	26.00
	12	6:30:00	74.96	28.00



	Número	Tiempo	•	•
	de medición	(H:M:S)	d (cm)	z (cm)
	0	0:00:00	0.00	0.00
	1	0:10:00	14.38	5.00
	2	0:20:00	27.38	8.50
	3	0:30:00	36.04	11.00
RIEGO 2.	4	0:40:00	39.52	13.50
KIEGO 2.	5	1:00:00	45.84	15.50
Q = 2.92lh - 1	6	1:15:00	51.80	17.50
	7	1:30:00	60.24	20.00
$\Theta i=0.215$	8	2:20:00	65.60	23.00
cm3cm-3	9	2:45:00	69.72	24.00
	10	3:10:00	82.62	27.00
	11	3:40:00	87.74	28.00
	12	4:30:00	88.18	30.00
	13	5:00:00	92.82	32.50

RIEGO 3.

Q=1.58 lh-1


 $\Theta i = 0.118$

cm3cm-3

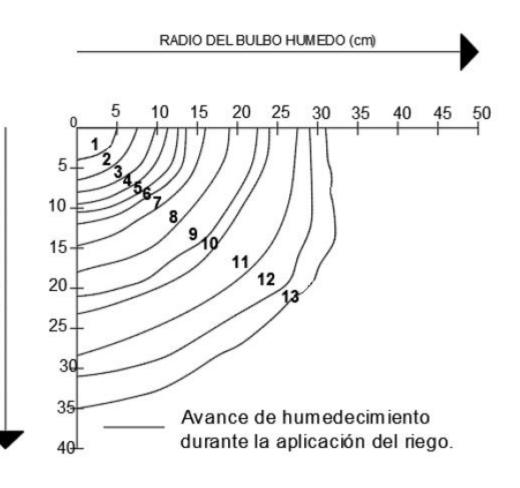
Número	Tiempo		
de medición	(H:M:S)	d (cm)	z (cm)
0	0:00:00	0.00	0.00
1	0:15:00	20.00	5.00
2	0:30:00	26.00	8.00
3	0:45:00	30.00	11.00
4	1:00:00	32.00	13.00
5	1:45:00	34.00	17.00
6	2:15:00	38.00	20.00
7	3:00:00	44.00	22.50
8	3:30:00	46.00	24.00
9	4:30:00	50.00	27.00
10	5:30:00	54.00	28.50
11	6:00:00	56.00	29.50

RIEGO 4.

Q=1.58 lh-1

 $\Theta i = 0.240$

cm3cm-3



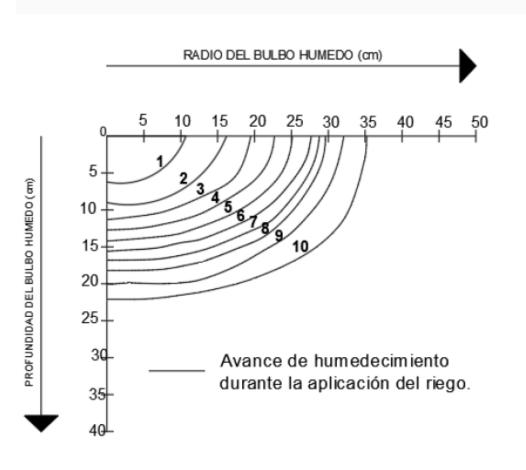
7. RESULTADOS

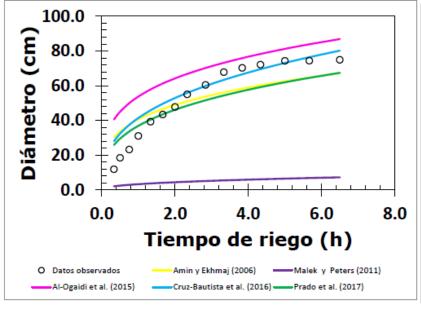
PROFUNDIDAD DEL BULBO HUMEDO (cm)

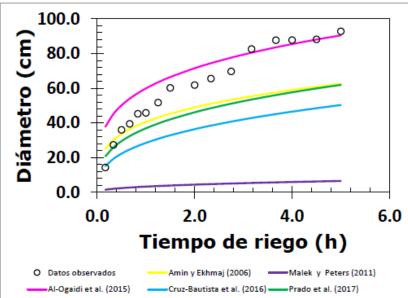
Número	Tiempo		
de medición	(H:M:S)	d (cm)	z (cm)
0	0:00:00	0.00	0.00
1	0:05:00	10.00	4.00
2	0:10:00	15.00	6.50
3	0:15:00	19.60	8.00
4	0:20:00	22.60	9.50
5	0:25:00	25.20	10.50
6	0:30:00	27.20	12.00
7	0:40:00	32.00	14.70
8	1:00:00	38.00	18.00
9	1:30:00	45.00	21.00
10	2:00:00	48.00	23.20
11	3:00:00	55.00	28.40
12	4:00:00	58.00	31.00
13	5:00:00	62.00	35.00

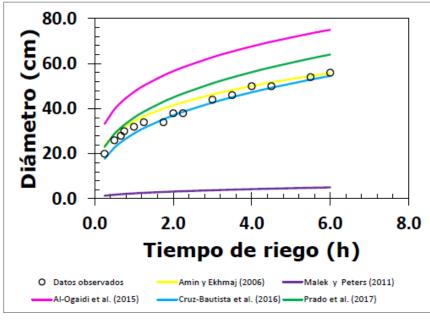


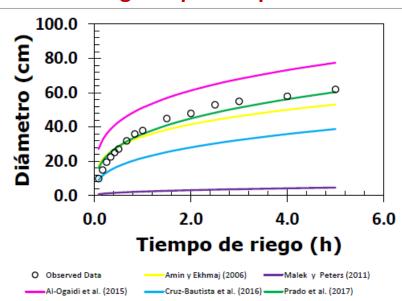
	Número	Tiempo	1 ()	- ()
	de medición	(H:M:S)	d (cm)	z (cm)
	0	0:00:00	0.00	0.00
	1	0:05:00	22.00	5.50
	2	0:10:00	28.80	8.00
	3	0:15:00	31.40	9.60
	4	0:20:00	34.00	11.20
RIEGO 5	5	0:30:00	39.60	13.50
0-7 40 lb 1	6	0:40:00	46.00	15.00
Q=7.48 lh-1	7	0:50:00	51.60	16.80
$\Theta i = 0.217$	8	1:00:00	55.00	19.20
cm3cm-3	9	1:10:00	56.60	20.50
	10	1:30:00	61.00	23.20
	11	2:00:00	67.20	26.30
	12	2:30:00	72.00	29.00
	13	3:00:00	78.00	32.00

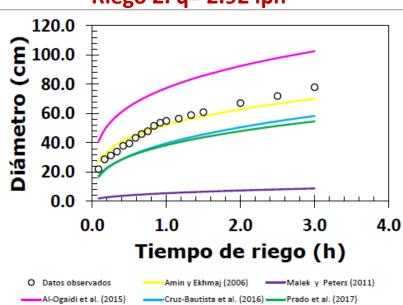


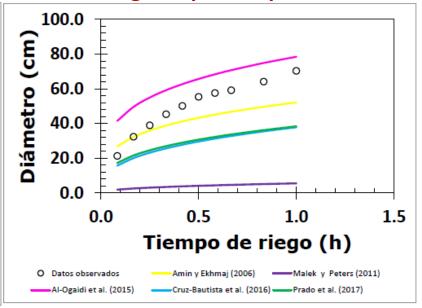





	Número	Tiempo		
	de medición	(H:M:S)	d (cm)	z (cm)
	0	0:00:00	0.00	0.00
	1	0:05:00	21.40	6.20
	2	0:10:00	32.40	9.00
RIEGO 6.	3	0:15:00	39.00	11.30
O 7 40 II. 1	4	0:20:00	45.40	12.70
Q=7.48 lh-1	5	0:25:00	50.20	14.20
$\Theta i=0.244$	6	0:30:00	55.40	15.60
cm3cm-3	7	0:35:00	57.60	16.80
	8	0:40:00	59.20	18.20
	9	0:50:00	64.20	20.00
	10	1:00:00	70.40	22.10

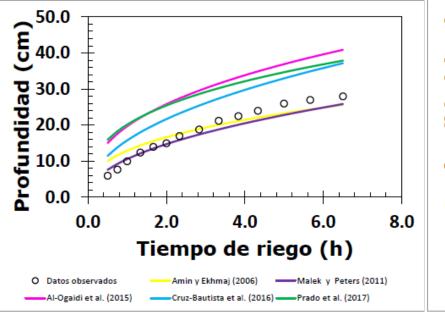

ANÁLISIS DE MODELOS EN DIÁMETRO

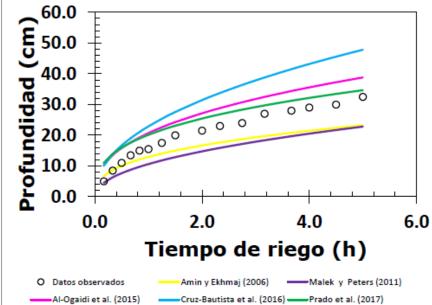


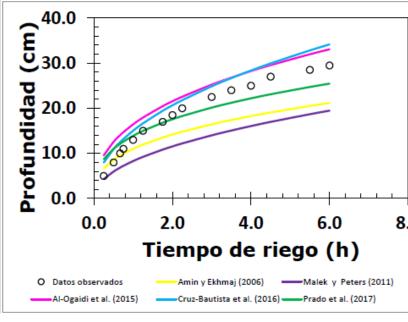

Riego 1. q= 2.92 lph

Riego 2. q= 2.92 lph

Riego 3. q= 1.58 lph

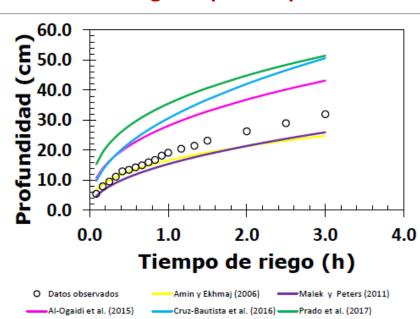


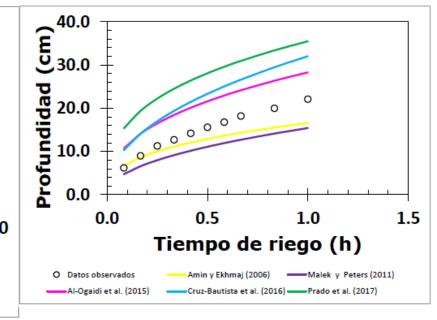

Riego 4. q= 1.58 lph


Riego 5. q= 7.48 lph

Riego 6. q= 7.48 lph

ANÁLISIS DE MODELOS EN PROFUNDIDAD




Riego 1. q= 2.92 lph

50.0 40.0 30.0 20.0 10.0 0.0 2.0 4.0 6.0 Tiempo de riego (h)

Riego 2. q= 2.92 lph

Riego 3. q= 1.58 lph

Riego 4. q= 1.58 lph

Riego 5. q= 7.48 lph

Riego 6. q= 7.48 lph

CONCLUSIONES

El modelo de Amin & Ekhmaj (2006) fue el que mostró mayor constancia y mejor desempeño para estimar las dimensiones horizontal y vertical del frente de humedecimiento para las diversas condiciones de riego. Según los valores de EFICIENCIA y los criterios de desempeño de Ritter & Muñoz-Carpena (2013), el modelo de Amin & Ekhmaj (2006) resultó de aceptable a muy bueno en la estimación del diámetro y profundidad del bulbo húmedo en un suelo de textura franco arenosa (valores entre 0.66 a 0.96).

BIBLIOGRAFÍA

- Comisión Nacional del Agua. 2020. Programa Hídrico Nacional 2020-2024. Versión Online. Revisado el 10 de marzo de 2023 https://www.dof.gob.mx/nota detalle.php?codigo=5609188&fecha=30/12/2020#gsc.tab=0
- Cruz-Bautista, F., Zermeño-González, A., Álvarez-Reyna, V., Cano-Ríos, P., Rivera-González, M.,
 & Siller-González, M. (2016). Validación de un modelo para estimar la extensión del bulbo de humedecimiento del suelo con riego por goteo. Tecnología y ciencias del agua, 7(1), 45-55.
- Cristóbal-Muñoz, I., Prado-Hernández, J. V., Martínez-Ruiz, A., Pascual-Ramírez, F., Cristóbal-Acevedo, D., & Cristóbal-Muñoz, D. (2022). An Improved Empirical Model for Estimating the Geometry of the Soil Wetting Front with Surface Drip Irrigation. Water, 14(11), 1827. DOI: 10.3390/w14111827
- FAO. 2020. El estado mundial de la agricultura y la alimentación 2020. Superar los desafíos relacionados con el agua en la agricultura. Roma. https://doi.org/10.4060/cb1447es

GRACIAS!

Ing. Alejandro Quintero Cabriales

alejandro.quintero.c@vde

+52 677 113 5957

