

SIMULATION OF HYDROLOGIC PROCESSES AND HYDRAULIC STRUCTURES USING AN INTERACTIVE APPROACH

Eduardo Jiménez Hernández

Miércoles, 9 de junio de 2021

Introduction

- Popular software for hydraulics and hydrologic modeling:
 - HECRAS for river analysis and open channel flow (USACE, 2020)
 - EPANET, simulation of hydraulic and water quality in pressurized pipe networks (Rossman, 2000)
 - HEC-HMS, to simulate hydrologic processes of dendritic watershed systems (USACE, 2021)
- In this work a developing project for a Python 3 software library is presented
- Capable of simulate hydrologic, hydraulic, and irrigation processes.
- Provide a flexible framework that allows further investigation with the utilization of sensitivity analysis, uncertainty analysis, and optimization.

Materials and Methods

Structure and organization of the library.

Materials and Methods

- Data science approach for climate.
- **Big data** is a term for any collection of data sets so large or complex that it becomes difficult to process them using traditional data management techniques.
- **Data science** involves using methods to analyze massive amounts of data and extract the knowledge it contains.
- Data science and big data evolved from statistics and traditional data management but are now considered to be distinct disciplines.

Cielen et al., (2016)

Results and Discussion

Preliminary results: some modules are complete and others are being actively

developed.

Creating we	eather	r dat	ta for	Tucson successful!	
Retrieving	data	for	2003	<pre>(https://cals.arizona.edu/azmet/data/0103rd.txt)</pre>	successful
Retrieving	data	for	2004	<pre>(https://cals.arizona.edu/azmet/data/0104rd.txt)</pre>	successful
Retrieving	data	for	2005	<pre>(https://cals.arizona.edu/azmet/data/0105rd.txt)</pre>	successful
Retrieving	data	for	2006	<pre>(https://cals.arizona.edu/azmet/data/0106rd.txt)</pre>	successful
Retrieving	data	for	2007	<pre>(https://cals.arizona.edu/azmet/data/0107rd.txt)</pre>	successful
Retrieving	data	for	2008	<pre>(https://cals.arizona.edu/azmet/data/0108rd.txt)</pre>	successful
Retrieving	data	for	2009	<pre>(https://cals.arizona.edu/azmet/data/0109rd.txt)</pre>	successful
Retrieving	data	for	2010	<pre>(https://cals.arizona.edu/azmet/data/0110rd.txt)</pre>	successful
Retrieving	data	for	2011	<pre>(https://cals.arizona.edu/azmet/data/0111rd.txt)</pre>	successful
Retrieving	data	for	2012	<pre>(https://cals.arizona.edu/azmet/data/0112rd.txt)</pre>	successful
Retrieving	data	for	2013	<pre>(https://cals.arizona.edu/azmet/data/0113rd.txt)</pre>	successful
Retrieving	data	for	2014	<pre>(https://cals.arizona.edu/azmet/data/0114rd.txt)</pre>	successful
Retrieving	data	for	2015	<pre>(https://cals.arizona.edu/azmet/data/0115rd.txt)</pre>	successful
Retrieving	data	for	2016	<pre>(https://cals.arizona.edu/azmet/data/0116rd.txt)</pre>	successful
Retrieving	data	for	2017	<pre>(https://cals.arizona.edu/azmet/data/0117rd.txt)</pre>	successful
Retrieving	data	for	2018	<pre>(https://cals.arizona.edu/azmet/data/0118rd.txt)</pre>	successful
Retrieving	data	for	2019	<pre>(https://cals.arizona.edu/azmet/data/0119rd.txt)</pre>	successful
Retrieving	data	for	2020	<pre>(https://cals.arizona.edu/azmet/data/0120rd.txt)</pre>	successful

In [8]: ws.data

Out[8								
	Year	DOY	Station	TMax	ET0	ETØPM	VaporPressure	DewPoint
0	2003	1	1	16.4	2.1	1.8	0.51	-2.6
1	2003	2	1	20.6	2.7	2.3	0.45	-4.3
2	2003	3	1	24.3	2.5	2.1	0.46	-4.0
3	2003	4	1	24.3	2.8	2.5	0.55	-1.5
4	2003	5	1	25.3	2.5	2.2	0.59	-0.6
6570	2020	361	1	21.6	2.6	1.6	0.50	-2.7
6571	2020	362	1	24.0	2.2	2.1	0.56	-1.3
6572	2020	363	1	23.4	3.6	3.8	0.62	0.1
6573	2020	364	1	13.4	1.8	1.6	0.70	1.7
6574	2020	365	1	15.8	2.3	1.7	0.45	-4.3

T- To	1			V	1DOV/	ICAL	ITM I	I DI Maran I	IETOI	TODAL
TU [a]: sei	ectio	on = [Year ,	- DOY,	SR ,	Triean ,	KHMean ,	E10,	ETOPM
In [1	0]: ws	.sele	ct(sele	ction)						
In [1	1]: ws	.data	ř.							
	Year	DOY	SR	TMean	RHMean	ET0	ETØPM			
0	2003	1	12.35	5.8	61.2	2.1	1.8			
1	2003	2	12.72	7.5	54.5	2.7	2.3			
2	2003	3	12.71	9.4	48.2	2.5	2.1			
3	2003	4	12.68	11.1	49.1	2.8	2.5			
4	2003	5	12.57	11.4	50.5	2.5	2.2			
6570	2020	361	13.46	9.1	48.8	2.6	1.6			
6571	2020	362	10.97	11.5	45.4	2.2	2.1			
6572	2020	363	11.50	16.2	35.7	3.6	3.8			
6573	2020	364	9.95	10.1	57.3	1.8	1.6			
6574	2020	365	13.63	5.7	55.0	2.3	1.7			

Data retrieval and preparation using Python standard libraries.

Results and Discussion

Plots for data exploration.

Results and Discussion

Data modeling, using classical techniques to model processes and design hydraulic structures.

Basic hydrologic calculations: a synthetic rainfall hyetograph, and an approximation of SCS Curve Type II

Iter		у	A	R	v	Q	Diff	Accept?	Iter	D	n	phi	d	tau	eta	SFb	Diff	Accep
	0	0.0100	0.0001	0.0035	0.1379	0.0000	30.0000	False	0	0.0100	0.0183	42.0000	0.4338	2.7070	55.2125	0.0180	1.4820	Fals
	1	0.0200	0.0004	0.0071	0.2190	0.0001	29.9999	0	1	0.0200	0.0206	42.0000	0.4649	2.9013	29.5876	0.0335	1.4665	Fals
	2	0.0300	0.0009	0.0106	0.2869	0.0003	29.9997	Θ	2	0.0300	0.0220	42.0000	0.4842	3.0213	20.5413	0.0482	1.4518	Fals
	3	0.0400	0.0016	0.0141	0.3476	0.0006	29.9994	0	3	0.0400	0.0231	42.0000	0.4983	3.1095	15.8556	0.0623	1.4377	Fals
	4	0.0500	0.0025	0.0177	0.4034	0.0010	29.9990	0	4	0.0500	0.0240	42.0000	0.5096	3.1797	12.9707	0.0761	1.4239	Fals
	5	0.0500	0.0025	0.0212	0.4555	0.0016	29.9990	0	5	0.0600	0.0247	42.0000	0.5189	3.2382	11.0078	0.0895	1.4105	Fals
	6	0.0000	0.0030	0.0212	0.4000	0.0010	29.9904	0	6	0.0700	0.0254	42.0000	0.5270	3.2885	9.5818	0.1027	1.3973	Fals
	7	0.0700	0.0049	0.0247	0.5040	0.0025	29.9915	0	7	0.0800	0.0259	42.0000	0.5341	3.3327	8.4968	0.1156	1.3844	Fals
	1	0.0800	0.0064	0.0283	0.5518	0.0035	29.9965	U	8	0.0900	0.0264	42.0000	0.5404	3.3722	7.6422	0.1283	1.3717	Fals
	8	0.0900	0.0081	0.0318	0.5969	0.0048	29.9952	0	9	0.1000	0.0269	42.0000	0.5461	3.4079	6.9508	0.1409	1.3591	Fals
	9	0.1000	0.0100	0.0354	0.6403	0.0064	29.9936	Θ	10	0.1100	0.0273	42.0000	0.5514	3.4405	6.3795	0.1533	1.3467	Fals
	10	0.1100	0.0121	0.0389	0.6823	0.0083	29.9917	0										

Design of a channel and riprap selection using iterative approach

Applications in engineering

Organizing calculations as desired.

Applications in engineering

Complex structures such as detention ponds also integrate: runoff hydrographs, culverts, weirs, etc.

Additional analysis

- Sensitivity analysis, how uncertainty in the output of a model (numerical or otherwise) can be apportioned to different sources of uncertainty in the model input (Saltelli et al., 2004).
- Uncertainty analysis, which focuses rather on quantifying uncertainty in model output (Saltelli, et al., 2008).

Conclusions

- An ongoing development of a software library for performing calculations in a wide set of fields in irrigation, hydraulics, and hydrology.
- The interactive approach is a result of the combination of factors such as scripts are usually run from the source code, Python being an interpreted language, and the IDEs typically used.
- Allow the user to run code step by step, verify intermediate results, and organize the calculations as desired.
- The library is flexible enough so it can be readily adapted to different methods or integrated with other Python modules to allow advanced model analysis, such as sensitivity analysis, uncertainty analysis, and optimization.
- Although the current version of the software is not complete, the finished modules are fully functional and already available for downloading and testing. However, the author insists on executing intensive testing before using the software in production environments or research.

References

- Cielen, D., Meysman, A. D. B., & Ali, M. (2016). The Data Science Process. In Introducing Data Science (pp. 22–56).
- Eiben, A. E., & Smith, J. E. (2015). Introduction to evolutionary computing (G. Rozenberg, T. Bäck, A. E. Eiben, J. N. Kok, & H. P. Spaink (eds.); Second Edi). Springer-Verlag. https://doi.org/10.1007/978-3-662-44874-8
- Haan, Barfield, Hayes, Barfield, Billy J, & Hayes, J. C. (1994). Design hydrology and sedimentology for small catchments. Academic Press.
- Mays, L. W. (2011). Water resources engineering (2nd ed). John Wiley.
- Rossman L. A., (2000). EPANET 2 Users Manual. United States Environmental Protection Agency. Cincinnati, OH, USA. <u>https://nepis.epa.gov/Adobe/PDF/P1007WWU.pdf</u>
- Saltelli, A, Andres, Terry, Campolongo, Francesca, Cariboni, Jessica, Gatelli, Debora, & Ratto, Marco. (2008). Global Sensitivity Analysis (1. Aufl.). Wiley-Interscience.
- US Army Corps of Engineers. 2020. HEC-RAS River Analysis System. Hydraulic Reference Manual. Version 6.0 Beta. Institute for Water Resources. Hydrologic Engineering Center. Davis CA, USA.

https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS_6.0_Referenc eManual.pdf

US Army Corps of Engineers. 2021. Hydrologic Modeling System (HEC-HMS) Technical Reference Manual. Hydrologic Engineering Center. Davis CA, USA. <u>https://www.hec.usace.army.mil/confluence/hmsdocs/hmstrm</u>

Sexto Congreso Nacional de Riego, Drenaje y Biosistem COMEII- 2021 / Hermosillo, Sonora

¡GRACIAS!

Eduardo Jiménez Hernández University of Arizona

eduardojh@email.arizona.edu

