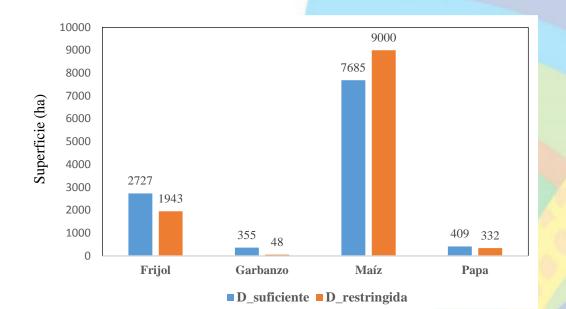


Quinto **Congreso Nacional** de Riego y Drenaje **COMEII-AURPAES 2019**

Septiembre 2019 | Mazatlán, Sinaloa:

PROBLEMAS EN LA ELABORACIÓN TRADICIONAL DE PLANES DE RIEGO EN DISTRITOS DE RIEGO

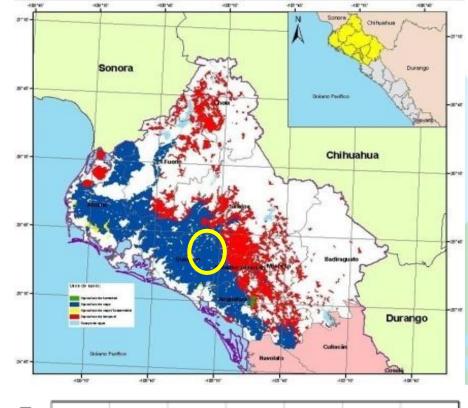
- Ernesto Sifuentes-Ibarra, IMTA / INIFAP
- Waldo Ojeda-Bustamante. COMEII
- Mauro Íñiguez-Covarrubias. IMTA
- Ignacio Sánchez-Cohen. CENID / RASPA / INIFAP
- José Rodolfo Namuche-Vargas. IMTA
- Vladimir Ruíz-Pérez, FAVF / UAS
- Jaime Macías-Cervantes, CEVAF / INIFAP

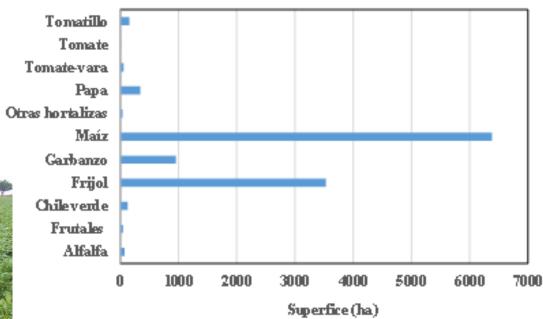


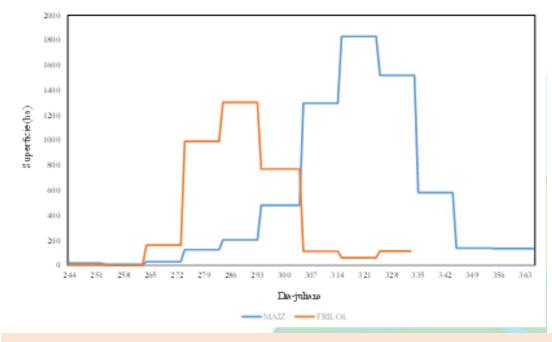
- DR noroeste: extensos, tecnificados y generadoras de riqueza, Río Mayo (038) y Río Fuerte (075), Sonora y norte de Sinaloa respectivamente.
- incremento en la variabilidad climática:
 duración de los ciclos, manejo tradicional
 (agua-insumos) ineficiente.
- Bajas eficiencias en el manejo del agua y otros insumos, sequias frecuentes y heladas: riesgo de estabilidad económica y social (Ojeda, 2008).
- Planeación + seguimiento adecuados (prioritarios) = gestión eficiente

- Se carece de metodología para nuevos escenarios climáticos y de operación
- Metodología actual: no considera estos cambios y carece de precisión (sobre-estimación)
- Adecuada planeación y acompañamiento del servicio de riego = incremento significativo de eficiencia
- Objetivo: identificar problemática en elaboración y seguimiento de PR tradicionales, analizar ventajas de planeación integral-grados día-desarrollo (GDD)

Materiales y métodos


Zona de estudio


- Módulo Batequis II-3 DR-075 Rio Fuerte
- Clima cálido, seco estepario tipo desértico en el verano, moderadamente frío en invierno, templado desde finales de Febrero
- Suelos planos profundos mayormente textura arcillosa pesada HA = 0.15 cm³ cm⁻³., elevación de 15 msnm.
- Superficie 12,000 ha, cultivo predominante maíz (monocultivo), seguido por frijol, garbanzo y papa



Materiales y métodos

Plan de riegos tradicional

- Balance volúmenes disponibles-esperados y volúmenes demandados por los cultivos y para otros usos (1-octubre).
- Plan-DR: genera anexos del plan (normatividad CONAGUA), a partir de coeficientes unitarios CURN, CUHR y CUSF.
- Valores-CU: 1) estimación con patrón-cultivos, superficie a regar, láminas e intervalos de riego, volúmenes para otros usos y eficiencias mensuales de conducción, 2) asignación directa (IMTA, 2014).

Distribución de superficie sembrada de maíz y frijol promedio del módulo de riego Batequis-DR 075

$$CURN_{decenal} = \frac{VA_{decenal}}{SR_{decenal}}$$

$$CURN_{total} = \sum_{i=1}^{n} CURN_{decenal} = Ln_{total}$$

VA_{decenali} SR_{decenal} Ln_{total} Volumen aplicado decenal (miles de m³)
Superficie regada decena (ha)
Lámina neta total del cultivo i (cm)

 $CUHR_{decenal} = NRA_{decena}$

$$CUHR_{total} = \sum_{i=1}^{n} CUHR_{decenal} = NR_{totales}$$

NRA_{decena} Número de riegos aplicados en la decena del cultivo i NR_{totales} Número de riegos totales del cultivo i

$$CUSF_{decenal} = \frac{SF_{decenal}}{SFT} \qquad CUSF_{total} = \sum_{i=1}^{n} CUSF_{decenal} = 1$$

SF_{decena} Superficie física decenal del cultivo i (ha) SFT Superficie física total del cultivo i (ha)

- Planes módulo – unidad – SRL – Distrito, se aplican eficiencias de conducción por nivel para calcular volúmenes brutos.

Plan integral de riegos

- Curva única de evapotranspiración (Íñiguez et al., 2011):

$$ET_{1C-i} = \sum_{j=i}^{NS} f_{i,j}ET_{c-i,j}$$

j evapotranspiración del cultivo integrada
j número de siembras a considerar
día bajo análisis hasta madurez fisiológica
(MF)

NS = número total de siembras para el cultivo
factor de la superficie sembrada para el día i
evapotranspiración del cultivo ponderada para
el día i de la siembra j para el cultivo analizado

$$f_{i,j} = \frac{S_{i,j}}{S_{t-1}}$$
, para cada día $\sum f_{i,j} = 1$

Si,j superficie establecida en el día i del cultivo con la fecha de siembra j superficie total del cultivo analizado para el

ETc diaria por fecha de siembra: metodología de programación integral del riego basada en GDD (Ojeda et al, 2006) con parámetros generados localmente (Kc, MDP, Pr):

$$ET_c = ET_o * K_c * K_s$$

Evapotranspiración del cultivo de referencia (FAO ETo Penman-Monteith) (mm día-1) Kc coeficiente de cultivo diario (GDD) Ks coeficiente de estrés

- Estimación de gastos demandados a nivel punto de control (PC):

$$Gasto - PC_{i,j} = \frac{\overline{ETc_{i,j}} * S_{i,j}}{8.64}$$

$$Ea * ECI * EC$$

gasto de riego demandado decenal a nivel PC Gasto-PC _{i,i} del cultivo i de la decena j [L s⁻¹] evapotranspiración del cultivo decenal del cultivo i de la decena j eficiencia de aplicación [adimensional] eficiencia de conducción interparcelaria [adimensional] eficiencia de conducción desde PC a la parcela [adimensional] Superficie establecida en la decena del cultivo del cultivo i en la decena j [ha]

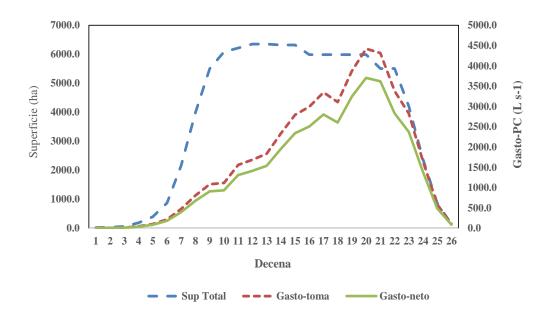
ETc_{i,i}

Ea

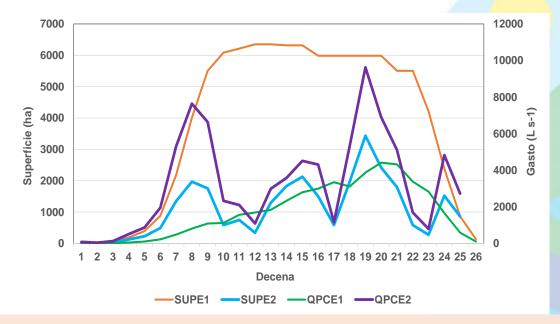
ECI

EC

 $S_{i,j}$



- PR-módulo: acumulación demanda gastos decenales de cultivos del patrón de cultivos.
- manejar otros - Permite escenarios operación y climáticos.


Resultados y Discusión

- Plan integral de riegos
- **Escenario 1**: maíz bajo riego por goteo, intervalos semanales, suministro de agua a la superficie establecida en el módulo de riego.

Plan integral: maíz-goteo, Batequis-DR075 a nivel punto de control (PC) (Eficiencia global = 84%)

- **Escenario 2**: maíz gravedad sin restricción de agua

Plan integral: maíz gravedad sin restricción de agua, Batequis-DR075 (Eficiencia global = 46%)

- Comparación Plan integral-plan tradicional
- Limitaciones metodología tradicional-PR y ventajas planeación integral (adaptación a escenarios climáticos y de operación).

Análisis comparativo entre plan de riegos tradicional y plan integral

Variable	Plan tradicional	Plan integral
Precisión (ETc)	Baja, no cuenta con respaldo experimental local	Alta, calculada a partir de parámetros de programación integral del riego generados experimentalmente
CUNR	Sin respaldo experimental, fijos y generalmente sobreestimados	Representativos y de alta precisión, dinámicos considerando escenarios de clima y operación
CUHR	Derivados de calendarios fijos, y Ln imprecisas	Derivados de calendarios generados con programación integral del riego considerando escenarios de operación, clima y fechas de siembra
CUSF	Derivado del patrón de cultivos	Derivado del patrón de cultivos
Adaptabilidad	Limitada, no considera variabilidad climática ni operación	Versátil, es posible generar coeficientes unitarios por escenario climático y de operación
Seguimiento	Limitado, generalmente incongruencia entre lo planeado y realizado	Versátil en el seguimiento del plan de riegos inicial usando plataformas basadas en GDD, congruencia entre lo planeado y realizado

Conclusiones

- Alta precisión en CUR-calidad de la operación.
- Versátil para adaptarse a escenarios climáticos y de operación (GDD)
- Seguimiento apoyado con plataformas desarrolladas bajo el mismo principio teórico
- Promover su adopción a zonas de riego del país desde el nivel sección

GRACIAS

Contacto:

Ernesto Sifuentes-Ibarra

eblnat68@gmail.com;

sifuentes.ernesto@inifap.gob.mx

(777) 329-3600 Ext.136