

IMPORTANCIA DE LAS REDES DE MONITOREO ÓPTIMAS EN LA GESTIÓN DE ACUÍFEROS

M. I. Pablo Gallardo Almanza

M. I. Leticia Becerra Soriano

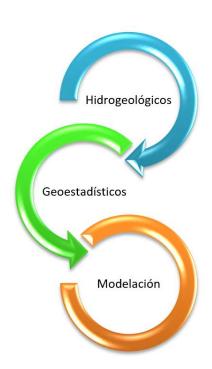
Fecha 30/11/2017

OBJETIVO DE LA RED DE MONITOREO

Objetivos de una red de monitoreo piezométrica y de calidad del agua.

- Mejorar el conocimiento del modelo conceptual del sistema acuífero.
- 2. Conocer la evolución de los niveles piezométricos, determinar magnitud y dirección de los gradientes hidráulicos.
- 3. Conocer la calidad del agua subterránea.
- Detectar posibles impactos poniendo de manifiesto anomalías piezométricas y/o eventos de contaminación en el entorno de las obras civiles proyectadas, en especial en las proximidades de zonas de interés natural y núcleos urbanos.
- Llevar un seguimiento de impactos adversos y prever medidas correctoras en los posibles impactos adversos en la calidad del agua y en la sobreexplotación del recurso.
- Generar información representativa y confiable de la calidad del agua, que el costo-beneficio sea eficiente.

DISEÑO DE RED DE MONITOREO


El diseño de redes de monitoreo de agua consiste en la selección de sitios de monitoreo y la frecuencia del monitoreo. En el caso específico del agua subterránea, existen varios métodos para diseñar redes (Herrera, 2009):

- Métodos hidrogeológicos
- Métodos geoestadísticos
- Modelos estocásticos de flujo y transporte

DISEÑO DE RED DE MONITOREO

DISEÑO DE REDES DE MONITOREO

Sitios en los que se diseña una red por primera vez

Sitios en los que aún no se han presentando problemas de contaminación

Sitios en los que se espera que las condiciones cambien en forma paulatina

Sitios en los que se espera que las condiciones cambien en forma paulatina o en los que las condiciones cambiarán abruptamente y es necesaria la predicción

DESCARGAS DE AGUAS SUBTERRÁNEAS

La descarga subterránea se define como el conjunto de salidas naturales o artificiales de agua subterránea de un acuífero. Las surgencias son descargas naturales del agua subterránea, pueden ser manantiales o resumideros en un terreno kárstico (WMO, 2012).

Pozo profundo

Manantial

Surgencia o Poza

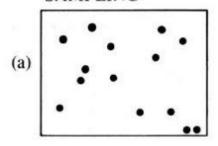
Mediciones del nivel del agua

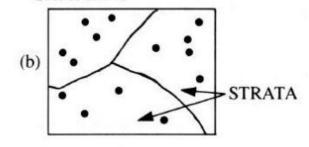
Mediciones de parámetros físicos

Método hidrogeológico

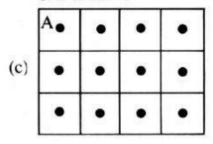
DISTRIBUCIÓN ESPACIAL ADECUADA

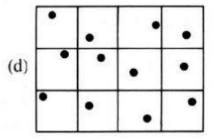
Según el análisis de variabilidad de Alley (1993), se recomienda usar una distribución estratificada y con separación por bloques en mallas, es decir, los tipos (b) y (d).


Método hidrogeológico



DISTRIBUCIÓN ESPACIAL ADECUADA


SIMPLE RANDOM SAMPLING


STRATIFIED RANDOM SAMPLING

SYSTEMATIC GRID SAMPLING

RANDOM SAMPLING WITHIN BLOCKS

Método geoestadístico

Un buen muestreo de datos es la mejor plataforma para poder obtener una buena base con la cual modelar y predecir los cambios presentes y futuros a corto, mediano y largo plazo de acuíferos o sistemas de acuíferos.

Existen tres aspectos importantes a considerar en la fase de recolección de datos:

- Cantidad de datos,
- Distribución de puntos, y
- Frecuencia de monitoreo.

Método geoestadístico

Diseño de la red de monitoreo

Los métodos de optimización para el diseño de redes de monitoreo son utilizados cuando la búsqueda manual de los mejores sitios es muy compleja, cuando el censo de aprovechamientos es muy grande y cuando los costos de medición de las variables son muy altos. Es necesario utilizar una metodología que consiste en tres sencillos pasos.

Diseño de red de monitoreo (univariado)

Caso de estudio Acuífero de Janos, Chihuahua

M. I. Pablo Gallardo Almanza

M. I. Leticia Becerra Soriano

Establecer la red de monitoreo piezométrico partiendo de la información recopilada de censo de aprovechamientos, piezometría y nivelación brocales; mediante un análisis geoestadístico se hará una selección de los aprovechamientos que tuvieran información piezométrica y que contaran con nivelación de brocales. Estableciendo la red óptima de monitoreo con apoyo de programas de cómputo y/o criterios hidrogeológicos.

Establecimiento de la red de monitoreo piezométrico

- a) Recopilación y análisis del censo de aprovechamientos, piezometría y nivelación de brocales
- b) Análisis geoestadístico
- c) Establecimiento de la red óptima de monitoreo

a) Recopilación y análisis del censo de aprovechamientos, piezometría y nivelación de brocales

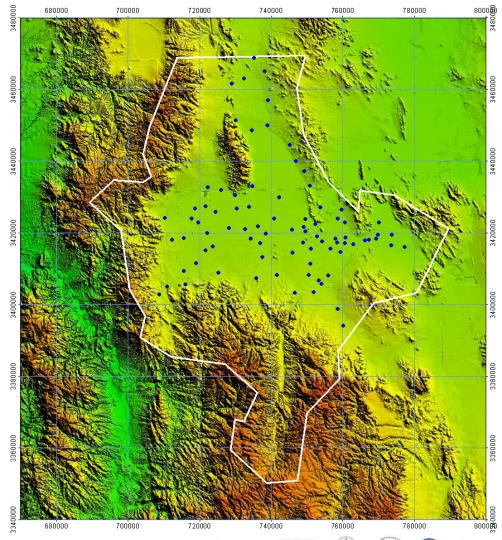
☐ Para este acuífero se contó con muy poca información histórica, y dado que no se tiene un censo actualizado se dispuso de la información preexistente.

Se optó por la piezometría del año más reciente para el análisis geoestadístico, tomando estos datos como la red piloto que sirvió como base para el diseño de la red óptima.

Registro histórico de la piezometría

Año de registro	No. de pozos muestreados
1982	50
1988	46
1999	52
2002	89
2004	84

El diseño de una red de monitoreo piezométrica consiste en seleccionar de forma óptima el número mínimo de las posiciones de los pozos que permitan obtener una buena estimación de los niveles de la carga hidráulica en todo el acuífero.



Red de monitoreo piloto

- Se utilizaron 84 pozos de monitoreo de la red piloto.
- Las profundidades varían en el rango de 2.7 a 86.5 metros.

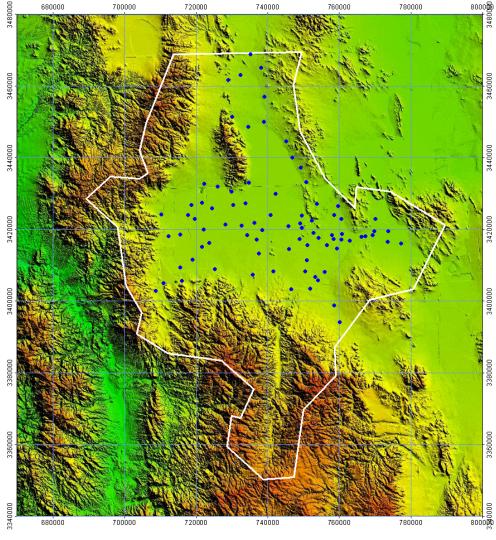
b) Análisis geoestadístico

✓ Metodología utilizada para el análisis geoestadístico consiste en tres pasos

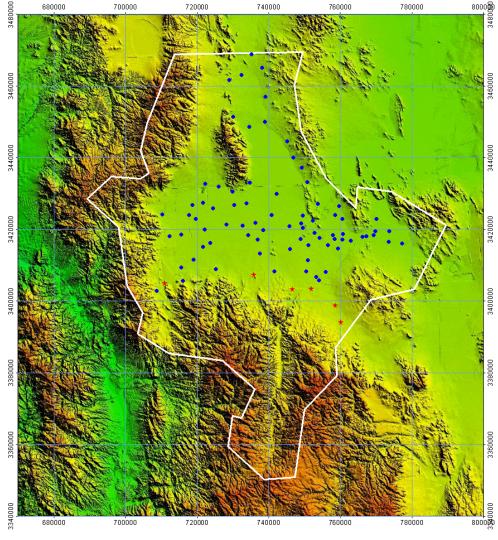
- Análisis Exploratorio de los datos
- Análisis Estructural
- Predicciones (kriging)

Análisis Exploratorio de los datos

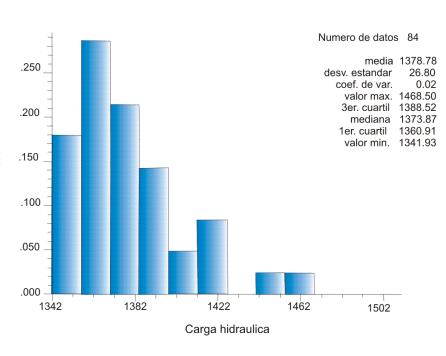
- ✓ Se inicia con los 84 puntos de medición
- De los cuales, seis resultaron ser valores atípicos distribucionales

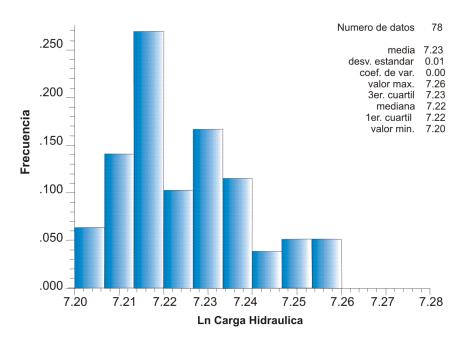


Red piloto (84 pozos)



Detección de valores atípicos (6 distribucionales)





VINCULANDO LA INFORMACIÓN CON ACCIONES POR EL AGUA Y LA ALIMENTACIÓN Frecuencia

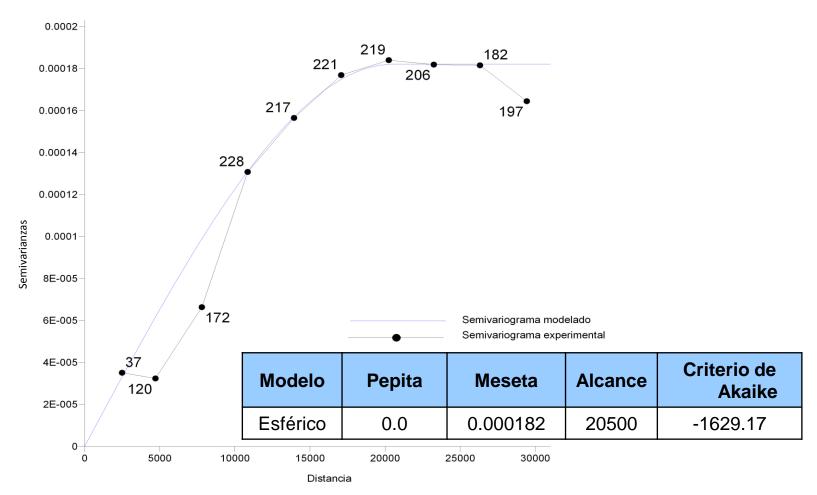
Análisis exploratorio

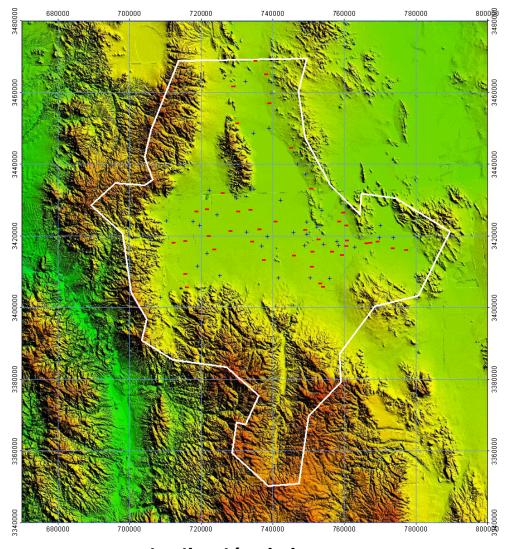
Prueba de normalidad

Carga Hidráulica, 2004

Logaritmo natural Carga Hidráulica sin seis outliers, 2004

Análisis Estructural



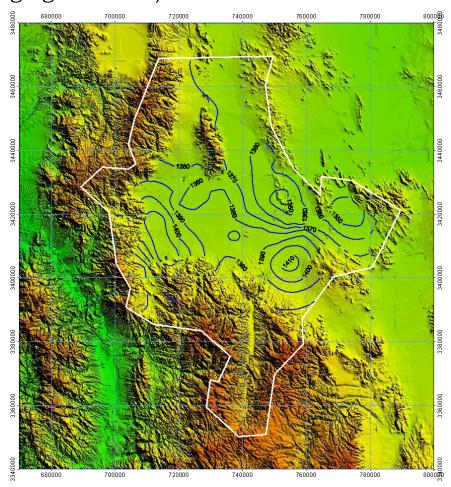


(Validación cruzada -leave one out)

Validación cruzada	Ln carga hidráulica
Error mínimo	-0.013
Error máximo	0.037
Valor medio del error	0.0003

Distribución de los errores

Predicciones (kriging)



(Predicciones - kriging ordinario)

Kriging Ordinario	Carga hidráulica
Valor estimado mínimo	1342.13
Valor estimado máximo	1420.63
Varianza	125.80
Coeficiente de variación	0.008
Coeficiente de asimetría	0.69

Resultados del kriging con 78 datos

Diseño óptimo de la red de monitoreo

c) Establecimiento de la red óptima de monitoreo

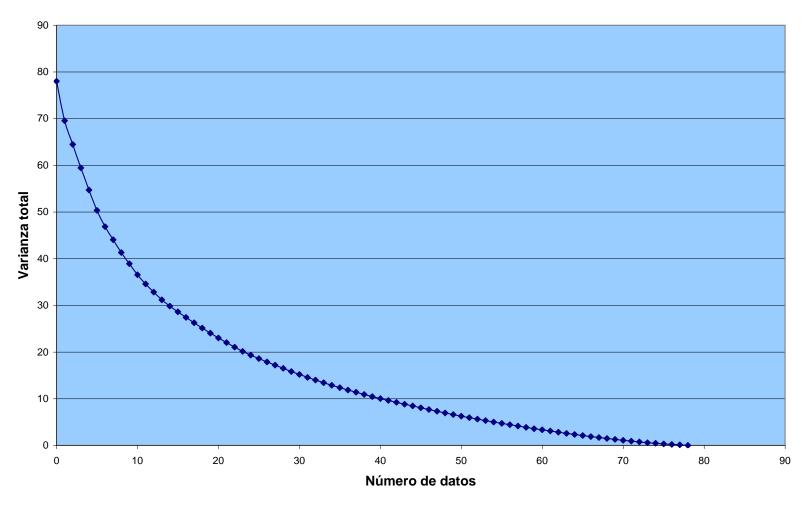
 Los sitios de monitoreo tomados en cuenta para seleccionar la red de monitoreo óptima son los 78 que conforman la red de monitoreo piloto ya que se consideran aptos para muestreo del agua subterránea.

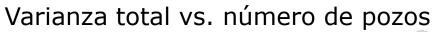
- Método para elegir la red de monitoreo óptima
 - Combinación de métodos geoestadísticos
 - Un filtro de Kalman
 - Método de optimización heurístico

- Método para elegir la red de monitoreo óptima
 - El filtro de Kalman puede calcular la varianza del error de la estimación con base en la posición de los sitios de muestreo, sin necesidad de conocer el dato medido en campo.
 - Para construir la red de monitoreo óptima se minimizó la varianza del error de la estimación en todos los pozos de la red piloto, esto es, cada nuevo punto que se añadió a la red fue aquel que resultara en un valor de la varianza menor.

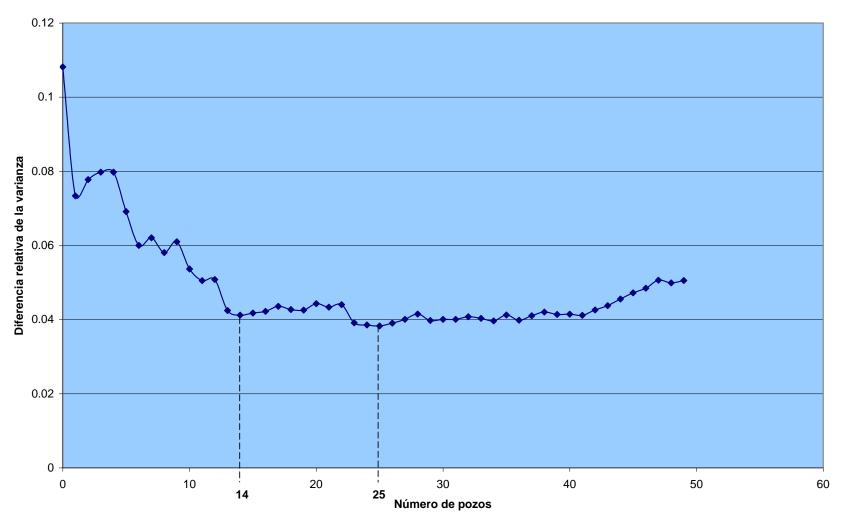
- Método para elegir la red de monitoreo óptima
 - La selección de los puntos se llevó a cabo a través de un método heurístico que trabaja secuencialmente, en cada paso se hace una evaluación del valor de la varianza resultante de añadir cada uno de los pozos seleccionados para muestreo de la red de monitoreo piloto y se elige el que da el valor mínimo de la varianza.
 - El filtro de Kalman utiliza como dato de entrada la matriz de covarianza del error de la estimación a priori o inicial. En este trabajo se calculó esta matriz de covarianza de la carga hidráulica a partir del semivariograma estimado en el análisis geoestadístico.

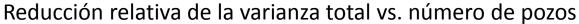
- Método para elegir la red de monitoreo óptima
 - El algoritmo elige entonces aquellos pozos que al añadirse minimizan la varianza total del error de la estimación para la carga hidráulica.





- Método para elegir la red de monitoreo óptima
 - En la gráfica de la reducción relativa de la varianza total, se determina el punto en el que se presenta el valor mínimo de la función como el número posible de pozos a incluir en la red de monitoreo.



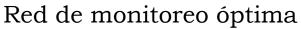


 Para decidir cuál sería el número de pozos que conformaría la red de monitoreo se compararon los resultados obtenidos en las estimaciones con kriging ordinario con 78 datos, y las estimaciones con 14 y 25 datos respectivamente.

Comparación de resultados de las opciones de la red óptima

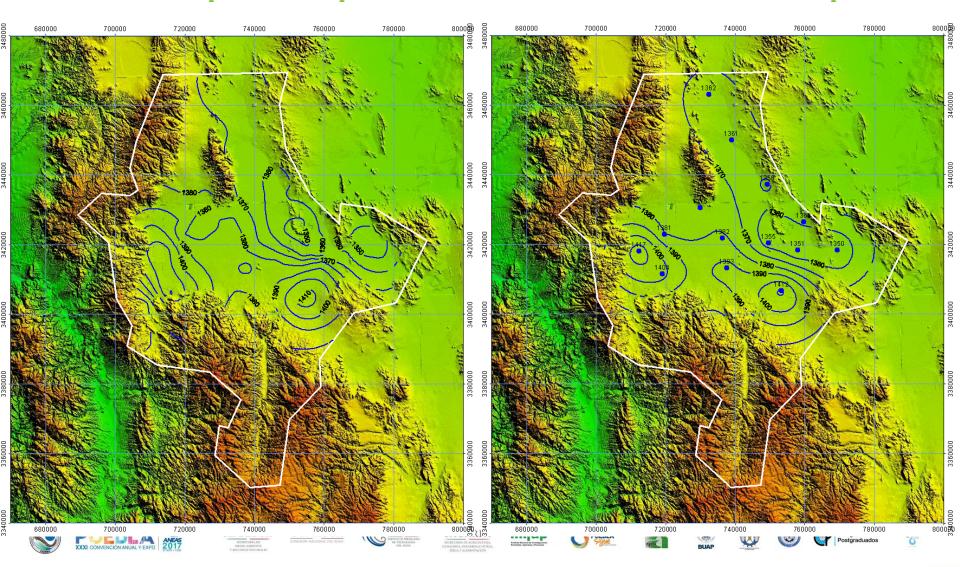
Kriging Ordinario	Carga hidráulica 78 pozos	Carga hidráulica 14 pozos	Carga hidráulica 25 pozos
Valor estimado mínimo	1342.13	1350.10	1350.02
Valor estimado máximo	1420.63	1416.01	1415.82
Varianza	125.80	79.06	84.41
Coeficiente de variación	0.008	0.006	0.007
Coeficiente de asimetría	0.69	0.69	0.75
Desviación estándar	11.21	8.89	9.19

 Del análisis anterior se concluye que, el utilizar una red de 14 pozos es suficiente para tener una buena estimación en el acuífero.



Verificación en campo de la red de monitoreo óptima

Núm. en red	Núm. en campo	Longitud (UTM)	Latitud (UTM)	Brocal (m)	PNE (m)	ENE (m)	Fecha	Nombre de usuario	Observaciones
379	379	769383	3418207	1365	14.83	1350.17	22/11/2006	Adán Quintana Madrid	Pozo La Bufala
J017	487	759615	3426449	1378	16.25	1361.75	22/11/2006	Félix Campo Loya	Sector Chapana 1
105	105	749211	3437217	1401	42.80	1358.20	22/11/2006	Sin datos	Después del rancho de José Luis Bustillos Delgado
86	86	738849	3449933	1380	20.17	1359.83	22/11/2006	SD	Cerca del Km. 45 carretera Janos Agua Prieta
75	75	728940	3461702	1451	89.49	1361.51	22/11/2006	SD	Papalote junto al rancho El Berrendo
J021	332	757597	3418353	1392	43.12	1348.88	23/11/2006	Kelly W. Romney	
294	294	753306	3406519	1436	23.91	1412.09	23/11/2006	Colonia Tres Álamos	Sector de los Cuevas
152	152	737585	3413085	1428	35.23	1392.77	23/11/2006	Papalote desviación brecha a Tierras Prietas	
573	573	718777	3410692	1434	28.40	1405.60	23/11/2006	Pivote 4	Rancho Agua Blanca
46	46	712390	3417935	1450	38.25	1411.75	23/11/2006	Rancho Santa Anita (operando)	Hilario Gabilondo Terrazas
8	8	719627	3422856	1409	62.91	1346.09	23/11/2006	Ernesto Chavarría	Nivel Dinámico
166A	166A	749315	3420459	1393	51.97	1341.03	24/11/2006	Ejido San Pedro	
143A	143A	735280	3421144	1401	23.21	1377.79	24/11/2006	Rancho El Uno	Pozo 2
17	17	729816	3430495	1398	34.54	1363.46	24/11/2006	Miguel Borunda Ponce	Rancho Sierra de Enmedio



Valores estimados de la carga hidráulica, utilizando 78 pozos de la red piloto

Valores estimados de la carga hidráulica, utilizando la red de monitoreo óptima

Conclusiones

Conclusiones

En el censo de aprovechamientos se identificaron 403, 405, 433, 822, 971, 986 aprovechamientos para los años 1971, 1972, 1979, 1988, 1999, 2000, pero en el 2002 solamente se sondearon 89 pozos de una red de monitoreo ya existente. Para el 2004 esta red quedó integrada por 84 pozos solamente, los cuales están distribuidos a lo largo de todo el acuífero.

Conclusiones

La red de monitoreo óptima quedó integrada por 14 pozos, los cuales quedaron bien distribuidos en todo el valle del acuífero Janos. Se optimizó a 14 pozos dado que financieramente es más económica la medición piezométrica de estos.

Recomendaciones

Realizar mediciones piezométricas al menos dos veces al año sobre la red óptima de monitoreo recomendada, lo cual podría efectuarse al final de la temporada de secas y de lluvias.

Se recomienda (si se cuenta con los fondos económicos suficientes) dar seguimiento a la red de aprovechamientos preexistente, la conformada por 84 pozos, para no perder la continuidad histórica de las mediciones piezométricas efectuadas desde 1982, 1988, 1999, 2002 y 2004. Esta red está bien distribuida en todo el valle de Janos.

Gracias

Pablo Gallardo Almanza

Instituto Mexicano de Tecnología del agua

gallardo@tlaloc.imta.mx

www.comeii.com/comeii2017

info@comeii.com

